314 research outputs found

    Quantitative Stability of Linear Infinite Inequality Systems under Block Perturbations with Applications to Convex Systems

    Get PDF
    The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set JJ. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l(J)l_{\infty}(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel-Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system's data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of [3] developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system's coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    Proximal Analysis and the Minimal Time Function of a Class of Semilinear Control Systems

    Get PDF
    The minimal time function of a class of semilinear control systems is considered in Banach spaces, with the target set being a closed ball. It is shown that the minimal time functions of the Yosida approximation equations converge to the minimal time function of the semilinear control system. Complete characterization is established for the subdifferential of the minimal time function satisfying the Hamilton–Jacobi–Bellman equation. These results extend the theory of finite dimensional linear control systems to infinite dimensional semilinear control systems

    The Radius of Metric Subregularity

    Get PDF
    There is a basic paradigm, called here the radius of well-posedness, which quantifies the "distance" from a given well-posed problem to the set of ill-posed problems of the same kind. In variational analysis, well-posedness is often understood as a regularity property, which is usually employed to measure the effect of perturbations and approximations of a problem on its solutions. In this paper we focus on evaluating the radius of the property of metric subregularity which, in contrast to its siblings, metric regularity, strong regularity and strong subregularity, exhibits a more complicated behavior under various perturbations. We consider three kinds of perturbations: by Lipschitz continuous functions, by semismooth functions, and by smooth functions, obtaining different expressions/bounds for the radius of subregularity, which involve generalized derivatives of set-valued mappings. We also obtain different expressions when using either Frobenius or Euclidean norm to measure the radius. As an application, we evaluate the radius of subregularity of a general constraint system. Examples illustrate the theoretical findings.Comment: 20 page

    On a Convex Set with Nondifferentiable Metric Projection

    Get PDF
    A remarkable example of a nonempty closed convex set in the Euclidean plane for which the directional derivative of the metric projection mapping fails to exist was constructed by A. Shapiro. In this paper, we revisit and modify that construction to obtain a convex set with smooth boundary which possesses the same property

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Optimality conditions in convex multiobjective SIP

    Get PDF
    The purpose of this paper is to characterize the weak efficient solutions, the efficient solutions, and the isolated efficient solutions of a given vector optimization problem with finitely many convex objective functions and infinitely many convex constraints. To do this, we introduce new and already known data qualifications (conditions involving the constraints and/or the objectives) in order to get optimality conditions which are expressed in terms of either Karusk–Kuhn–Tucker multipliers or a new gap function associated with the given problem.This research was partially cosponsored by the Ministry of Economy and Competitiveness (MINECO) of Spain, and by the European Regional Development Fund (ERDF) of the European Commission, Project MTM2014-59179-C2-1-P
    corecore